Spaces between $H^{1}$ and $L^{1}$
نویسندگان
چکیده
منابع مشابه
Proximity to l1 and Distortion in Asymptotic l1 Spaces
For an asymptotic l1 space X with a basis (xi) certain asymptotic l1 constants, δα(X) are defined for α < ω1. δα(X) measures the equivalence between all normalized block bases (yi) k i=1 of (xi) which are Sα-admissible with respect to (xi) (Sα is the α -Schreier class of sets) and the unit vector basis of l 1 . This leads to the concept of the delta spectrum of X , ∆(X), which reflects the beha...
متن کاملcompactifications and function spaces on weighted semigruops
chapter one is devoted to a moderate discussion on preliminaries, according to our requirements. chapter two which is based on our work in (24) is devoted introducting weighted semigroups (s, w), and studying some famous function spaces on them, especially the relations between go (s, w) and other function speces are invesigated. in fact this chapter is a complement to (32). one of the main fea...
15 صفحه اولwavelets, modulation spaces and pseudidifferential operators
مبحث تحلیل زمان-فرکانسی سیگنالها یکی از مهمترین زمینه های مورد بررسی پژوهشگران علوم ÷ایه کاربردی و فنی مهندسی میباشد.در این پایان نامه فضاهای مدولاسیون به عنوان زمینه اصلی این بررسی ها معرفی گردیده اند و نتایج جدیدی که در حوزه های مختلف ریاضی،فیزیک و مهندسی کاربرداساسی و فراوانی دارند استوار و بیان شده اند.به ویژه در این پایان نامه به بررسی و یافتن مقادیر ویژه عملگر های شبه دیفرانسیل با سمبل در...
On Approximate l1 Systems in Banach Spaces
Let X be a real Banach space and let (f(n)) be a positive nondecreasing sequence. We consider systems of unit vectors (xi) ∞ i=1 in X which satisfy ‖ ∑ i∈A±xi‖ ≥ |A| − f(|A|), for all finite A ⊂ N and for all choices of signs. We identify the spaces which contain such systems for bounded (f(n)) and for all unbounded (f(n)). For arbitrary unbounded (f(n)), we give examples of systems for which [...
متن کاملOn weak compactness in L1 spaces
We will use the concept of strong generating and a simple renorming theorem to give new proofs to slight generalizations of some results of Argyros and Rosenthal on weakly compact sets in L1(μ) spaces for finite measures μ. The purpose of this note is to show that a simple transfer renorming theorem explains why L1(μ)-spaces, for finite measures μ, share some properties with superreflexive spac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 2008
ISSN: 0002-9939
DOI: 10.1090/s0002-9939-08-09223-x